En las técnicas de valoración de flujo de efectivo descontado (DCF), el valor de las acciones se estima con base en el valor presente de alguna medida del flujo de efectivo. El flujo de efectivo libre a capital (FCFE) se describe generalmente como flujos de efectivo disponibles para el accionista después de los pagos a los tenedores de deuda y después de permitir gastos para mantener la base de activos de la empresa.
Área para los usuarios de pago
Prueba gratis
Applied Materials Inc. páginas disponibles de forma gratuita esta semana:
- Estructura del balance: activos
- Análisis de ratios de rentabilidad
- Análisis de ratios de actividad a corto plazo
- Análisis de ratios de actividad a largo plazo
- Análisis de DuPont: Desagregación de ROE, ROAy ratio de margen de beneficio neto
- Análisis de áreas geográficas
- Ratios de valoración de acciones ordinarias
- Relación valor de la empresa con respecto a la FCFF (EV/FCFF)
- Modelo de descuento de dividendos (DDM)
- Relación precio/ingreso neto (P/E) desde 2005
Aceptamos:
Valor intrínseco de las acciones (resumen de valoración)
Applied Materials Inc., pronóstico de flujo de efectivo libre a capital (FCFE)
US$ en millones, excepto datos por acción
Año | Valor | FCFEt o valor terminal (TVt) | Cálculo | Valor actual a |
---|---|---|---|---|
01 | FCFE0 | |||
1 | FCFE1 | = × (1 + ) | ||
2 | FCFE2 | = × (1 + ) | ||
3 | FCFE3 | = × (1 + ) | ||
4 | FCFE4 | = × (1 + ) | ||
5 | FCFE5 | = × (1 + ) | ||
5 | Valor terminal (TV5) | = × (1 + ) ÷ ( – ) | ||
Valor intrínseco de Applied acciones ordinarias | ||||
Valor intrínseco de Applied acciones ordinarias (por acción) | ||||
Precio actual de la acción |
Basado en el informe: 10-K (fecha de reporte: 2021-10-31).
¡Renuncia!
La valoración se basa en supuestos estándar. Puede haber factores específicos relevantes para el valor de las acciones y omitidos aquí. En tal caso, el valor real de las acciones puede diferir significativamente de la estimación. Si desea utilizar el valor intrínseco estimado de las acciones en el proceso de toma de decisiones de inversión, hágalo bajo su propio riesgo.
Tasa de retorno requerida (r)
Suposiciones | ||
Tasa de rendimiento de LT Treasury Composite1 | RF | |
Tasa de rendimiento esperada de la cartera de mercado2 | E(RM) | |
Riesgo sistemático de acciones ordinarias Applied | βAMAT | |
Tasa de rendimiento requerida sobre acciones ordinarias aplicadas3 | rAMAT |
1 Promedio no ponderado de los rendimientos de las ofertas en todos los bonos del Tesoro de los Estados Unidos con cupón fijo pendientes, ni vencidos ni exigibles en menos de 10 años (proxy de tasa de rendimiento libre de riesgo).
3 rAMAT = RF + βAMAT [E(RM) – RF]
= + [ – ]
=
Tasa de crecimiento de FCFE (g)
Basado en informes: 10-K (fecha de reporte: 2021-10-31), 10-K (fecha de reporte: 2020-10-25), 10-K (fecha de reporte: 2019-10-27), 10-K (fecha de reporte: 2018-10-28), 10-K (fecha de reporte: 2017-10-29), 10-K (fecha de reporte: 2016-10-30).
2021 Cálculos
1 Tasa de retención = (Ingresos netos – Dividendos declarados) ÷ Ingresos netos
= ( – ) ÷
=
2 Ratio de margen de beneficio = 100 × Ingresos netos ÷ Ventas netas
= 100 × ÷
=
3 Ratio de facturación del activo = Ventas netas ÷ Activos totales
= ÷
=
4 Ratio de apalancamiento financiero = Activos totales ÷ Patrimonio de los accionistas
= ÷
=
5 g = Tasa de retención × Ratio de margen de beneficio × Ratio de facturación del activo × Ratio de apalancamiento financiero
= × × ×
=
Tasa de crecimiento de FCFE (g) implícita en el modelo de una sola etapa
g = 100 × (Valor de mercado de renta variable0 × r – FCFE0) ÷ (Valor de mercado de renta variable0 + FCFE0)
= 100 × ( × – ) ÷ ( + )
=
donde:
Valor de mercado de renta variable0 = valor de mercado actual de Applied acciones ordinarias (US$ en millones)
FCFE0 = el último año Se aplicó el flujo de caja libre al capital (US$ en millones)
r = tasa de rendimiento requerida sobre acciones ordinarias aplicadas
Año | Valor | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 y posteriores | g5 |
donde:
g1 está implícito en el modelo PRAT
g5 está implícito en el modelo de una sola etapa
g2, g3 y g4 se calculan mediante interpolación lineal entre g1 y g5
Cálculos
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=