En las técnicas de valoración de flujos de caja descontados (DCF), el valor de las acciones se estima en función del valor presente de alguna medida del flujo de caja. El flujo de caja libre para la empresa (FCFF) se describe generalmente como los flujos de caja después de los costes directos y antes de cualquier pago a los proveedores de capital.
Área para los usuarios de pago
Pruébalo gratis
Phillips 66 páginas disponibles de forma gratuita esta semana:
- Estado de flujos de efectivo
- Estructura del balance: pasivo y patrimonio contable
- Análisis de ratios de rentabilidad
- Análisis de ratios de liquidez
- Análisis de ratios de actividad a corto plazo
- Análisis de DuPont: Desagregación de ROE, ROAy ratio de margen de beneficio neto
- Análisis de áreas geográficas
- Valor actual del flujo de caja libre respecto al patrimonio neto (FCFE)
- Datos financieros seleccionados desde 2012
- Análisis de ingresos
Aceptamos:
Valor intrínseco de las acciones (resumen de valoración)
Phillips 66, previsión de flujo de caja libre para la empresa (FCFF)
US$ en millones, excepto datos por acción
Año | Valor | FCFFt o valor terminal (TVt) | Cálculo | Valor actual en |
---|---|---|---|---|
01 | FCFF0 | |||
1 | FCFF1 | = × (1 + ) | ||
2 | FCFF2 | = × (1 + ) | ||
3 | FCFF3 | = × (1 + ) | ||
4 | FCFF4 | = × (1 + ) | ||
5 | FCFF5 | = × (1 + ) | ||
5 | Valor terminal (TV5) | = × (1 + ) ÷ ( – ) | ||
Valor intrínseco del capital Phillips 66 | ||||
Menos: Deuda (valor razonable) | ||||
Valor intrínseco de Phillips 66 acciones ordinarias | ||||
Valor intrínseco de Phillips 66 acciones ordinarias (por acción) | ||||
Precio actual de las acciones |
Basado en el informe: 10-K (Fecha del informe: 2019-12-31).
¡Renuncia!
La valoración se basa en supuestos estándar. Pueden existir factores específicos relevantes para el valor de las acciones y omitidos aquí. En tal caso, el valor real de las existencias puede diferir significativamente del estimado. Si desea utilizar el valor intrínseco estimado de las acciones en el proceso de toma de decisiones de inversión, hágalo bajo su propio riesgo.
Costo promedio ponderado de capital (WACC)
Valor1 | Peso | Tasa de retorno requerida2 | Cálculo | |
---|---|---|---|---|
Patrimonio neto (valor razonable) | ||||
Deuda (valor razonable) | = × (1 – ) |
Basado en el informe: 10-K (Fecha del informe: 2019-12-31).
1 US$ en millones
Patrimonio neto (valor razonable) = Número de acciones ordinarias en circulación × Precio actual de las acciones
= × $
= $
Deuda (valor razonable). Ver detalles »
2 La tasa de rendimiento requerida sobre el capital se estima utilizando CAPM. Ver detalles »
Tasa de rendimiento requerida de la deuda. Ver detalles »
La tasa de rendimiento requerida de la deuda es después de impuestos.
Tasa efectiva estimada (promedio) del impuesto sobre la renta
= ( + + + + ) ÷ 5
=
WACC =
Tasa de crecimiento de FCFF (g)
Basado en los informes: 10-K (Fecha del informe: 2019-12-31), 10-K (Fecha del informe: 2018-12-31), 10-K (Fecha del informe: 2017-12-31), 10-K (Fecha del informe: 2016-12-31), 10-K (Fecha del informe: 2015-12-31).
2019 Cálculos
2 Gastos por intereses y deudas, después de impuestos = Gastos por intereses y deudas × (1 – EITR)
= × (1 – )
=
3 EBIT(1 – EITR)
= Utilidad neta atribuible a Phillips 66 + Gastos por intereses y deudas, después de impuestos
= +
=
4 RR = [EBIT(1 – EITR) – Gastos por intereses (después de impuestos) y dividendos] ÷ EBIT(1 – EITR)
= [ – ] ÷
=
5 ROIC = 100 × EBIT(1 – EITR) ÷ Capital total
= 100 × ÷
=
6 g = RR × ROIC
= ×
=
Tasa de crecimiento del FCFF (g) implícita en el modelo de carga única
g = 100 × (Capital total, valor razonable0 × WACC – FCFF0) ÷ (Capital total, valor razonable0 + FCFF0)
= 100 × ( × – ) ÷ ( + )
=
Dónde:
Capital total, valor razonable0 = Valor razonable actual de Phillips 66 deuda y patrimonio neto (US$ en millones)
FCFF0 = el último año Phillips 66 flujo de caja libre a la empresa (US$ en millones)
WACC = Costo promedio ponderado del capital Phillips 66
Año | Valor | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 y siguientes | g5 |
Dónde:
g1 está implícito en el modelo PRAT
g5 está implícito en el modelo de una sola etapa
g2, g3 y g4 se calculan mediante interpolación lineal entre g1 y g5
Cálculos
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=