En las técnicas de valoración de flujos de caja descontados (DCF), el valor de las acciones se estima en función del valor presente de alguna medida del flujo de caja. El flujo de caja libre a capital (FCFE) se describe generalmente como los flujos de efectivo disponibles para el accionista después de los pagos a los tenedores de deuda y después de tener en cuenta los gastos para mantener la base de activos de la empresa.
Área para los usuarios de pago
Pruébalo gratis
Mondelēz International Inc. páginas disponibles de forma gratuita esta semana:
- Estado de resultado integral
- Estado de flujos de efectivo
- Análisis de ratios de rentabilidad
- Análisis de ratios de liquidez
- Análisis de ratios de solvencia
- Análisis de ratios de actividad a largo plazo
- Ratio de margen de beneficio neto desde 2005
- Ratio de rendimiento sobre el capital contable (ROE) desde 2005
- Ratio de rentabilidad sobre activos (ROA) desde 2005
- Coeficiente de liquidez corriente desde 2005
Aceptamos:
Valor intrínseco de las acciones (resumen de valoración)
Mondelēz International Inc., previsión de flujo de caja libre a capital (FCFE)
US$ en millones, excepto datos por acción
Año | Valor | FCFEt o valor terminal (TVt) | Cálculo | Valor actual en |
---|---|---|---|---|
01 | FCFE0 | |||
1 | FCFE1 | = × (1 + ) | ||
2 | FCFE2 | = × (1 + ) | ||
3 | FCFE3 | = × (1 + ) | ||
4 | FCFE4 | = × (1 + ) | ||
5 | FCFE5 | = × (1 + ) | ||
5 | Valor terminal (TV5) | = × (1 + ) ÷ ( – ) | ||
Valor intrínseco de Mondelēz International acciones ordinarias | ||||
Valor intrínseco de Mondelēz International acciones ordinarias (por acción) | ||||
Precio actual de las acciones |
Basado en el informe: 10-K (Fecha del informe: 2023-12-31).
¡Renuncia!
La valoración se basa en supuestos estándar. Pueden existir factores específicos relevantes para el valor de las acciones y omitidos aquí. En tal caso, el valor real de las existencias puede diferir significativamente del estimado. Si desea utilizar el valor intrínseco estimado de las acciones en el proceso de toma de decisiones de inversión, hágalo bajo su propio riesgo.
Tasa de retorno requerida (r)
Suposiciones | ||
Tasa de rendimiento del LT Treasury Composite1 | RF | |
Tasa de rendimiento esperada de la cartera de mercado2 | E(RM) | |
Riesgo sistemático de Mondelēz International acciones ordinarias | βMDLZ | |
Tasa de rendimiento requerida de las acciones ordinarias de Mondelēz International3 | rMDLZ |
1 Promedio no ponderado de los rendimientos de las ofertas de todos los bonos del Tesoro de EE. UU. con cupón fijo en circulación que no vencen ni son rescatables en menos de 10 años (proxy de tasa de rendimiento libre de riesgo).
3 rMDLZ = RF + βMDLZ [E(RM) – RF]
= + [ – ]
=
Tasa de crecimiento de FCFE (g)
Tasa de crecimiento de FCFE (g) implícita en el modelo PRAT
Mondelēz International Inc., modelo PRAT
Basado en los informes: 10-K (Fecha del informe: 2023-12-31), 10-K (Fecha del informe: 2022-12-31), 10-K (Fecha del informe: 2021-12-31), 10-K (Fecha del informe: 2020-12-31), 10-K (Fecha del informe: 2019-12-31).
2023 Cálculos
1 Tasa de retención = (Beneficio neto atribuible a Mondelēz International – Dividendos en efectivo declarados) ÷ Beneficio neto atribuible a Mondelēz International
= ( – ) ÷
=
2 Ratio de margen de beneficio = 100 × Beneficio neto atribuible a Mondelēz International ÷ Ingresos netos
= 100 × ÷
=
3 Ratio de rotación de activos = Ingresos netos ÷ Activos totales
= ÷
=
4 Ratio de apalancamiento financiero = Activos totales ÷ Capital social total de Mondelēz International
= ÷
=
5 g = Tasa de retención × Ratio de margen de beneficio × Ratio de rotación de activos × Ratio de apalancamiento financiero
= × × ×
=
Año | Valor | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 y siguientes | g5 |
Dónde:
g1 está implícito en el modelo PRAT
g5 está implícito en el modelo de una sola etapa
g2, g3 y g4 se calculan mediante interpolación lineal entre g1 y g5
Cálculos
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=