En las técnicas de valoración de flujos de caja descontados (DCF), el valor de las acciones se estima en función del valor presente de alguna medida del flujo de caja. El flujo de caja libre a capital (FCFE) se describe generalmente como los flujos de efectivo disponibles para el accionista después de los pagos a los tenedores de deuda y después de tener en cuenta los gastos para mantener la base de activos de la empresa.
Área para los usuarios de pago
Pruébalo gratis
Hess Corp. páginas disponibles de forma gratuita esta semana:
- Estado de flujos de efectivo
- Estructura de la cuenta de resultados
- Análisis de ratios de liquidez
- Análisis de ratios de solvencia
- Análisis de ratios de actividad a corto plazo
- Relación entre el valor de la empresa y la EBITDA (EV/EBITDA)
- Ratio de deuda sobre fondos propios desde 2005
- Ratio de rotación total de activos desde 2005
- Relación precio/ingresos (P/S) desde 2005
- Análisis de la deuda
Aceptamos:
Valor intrínseco de las acciones (resumen de valoración)
Hess Corp., previsión de flujo de caja libre a capital (FCFE)
US$ en millones, excepto datos por acción
Año | Valor | FCFEt o valor terminal (TVt) | Cálculo | Valor actual en |
---|---|---|---|---|
01 | FCFE0 | |||
1 | FCFE1 | = × (1 + ) | ||
2 | FCFE2 | = × (1 + ) | ||
3 | FCFE3 | = × (1 + ) | ||
4 | FCFE4 | = × (1 + ) | ||
5 | FCFE5 | = × (1 + ) | ||
5 | Valor terminal (TV5) | = × (1 + ) ÷ ( – ) | ||
Valor intrínseco de Hess acciones ordinarias | ||||
Valor intrínseco de Hess acciones ordinarias (por acción) | ||||
Precio actual de las acciones |
Basado en el informe: 10-K (Fecha del informe: 2022-12-31).
¡Renuncia!
La valoración se basa en supuestos estándar. Pueden existir factores específicos relevantes para el valor de las acciones y omitidos aquí. En tal caso, el valor real de las existencias puede diferir significativamente del estimado. Si desea utilizar el valor intrínseco estimado de las acciones en el proceso de toma de decisiones de inversión, hágalo bajo su propio riesgo.
Tasa de retorno requerida (r)
Suposiciones | ||
Tasa de rendimiento del LT Treasury Composite1 | RF | |
Tasa de rendimiento esperada de la cartera de mercado2 | E(RM) | |
Riesgo sistemático de Hess acciones ordinarias | βHES | |
Tasa de rendimiento requerida sobre las acciones ordinarias de Hess3 | rHES |
1 Promedio no ponderado de los rendimientos de las ofertas de todos los bonos del Tesoro de EE. UU. con cupón fijo en circulación que no vencen ni son rescatables en menos de 10 años (proxy de tasa de rendimiento libre de riesgo).
3 rHES = RF + βHES [E(RM) – RF]
= + [ – ]
=
Tasa de crecimiento de FCFE (g)
Basado en los informes: 10-K (Fecha del informe: 2022-12-31), 10-K (Fecha del informe: 2021-12-31), 10-K (Fecha del informe: 2020-12-31), 10-K (Fecha del informe: 2019-12-31), 10-K (Fecha del informe: 2018-12-31).
2022 Cálculos
1 Tasa de retención = (Utilidad (pérdida) neta atribuible a Hess Corporation – Dividendos de acciones ordinarias – Dividendos sobre acciones preferentes) ÷ (Utilidad (pérdida) neta atribuible a Hess Corporation – Dividendos sobre acciones preferentes)
= ( – – ) ÷ ( – )
=
2 Ratio de margen de beneficio = 100 × (Utilidad (pérdida) neta atribuible a Hess Corporation – Dividendos sobre acciones preferentes) ÷ Ventas y otros ingresos operativos
= 100 × ( – ) ÷
=
3 Ratio de rotación de activos = Ventas y otros ingresos operativos ÷ Activos totales
= ÷
=
4 Ratio de apalancamiento financiero = Activos totales ÷ Capital contable total de Hess Corporation
= ÷
=
5 g = Tasa de retención × Ratio de margen de beneficio × Ratio de rotación de activos × Ratio de apalancamiento financiero
= × × ×
=
Tasa de crecimiento de FCFE (g) implícita en el modelo de carga única
g = 100 × (Valor de mercado de la renta variable0 × r – FCFE0) ÷ (Valor de mercado de la renta variable0 + FCFE0)
= 100 × ( × – ) ÷ ( + )
=
Dónde:
Valor de mercado de la renta variable0 = Valor actual de mercado de Hess acciones ordinarias (US$ en millones)
FCFE0 = el último año Flujo de caja libre de Hess a capital (US$ en millones)
r = Tasa de rendimiento requerida sobre las acciones ordinarias de Hess
Año | Valor | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 y siguientes | g5 |
Dónde:
g1 está implícito en el modelo PRAT
g5 está implícito en el modelo de una sola etapa
g2, g3 y g4 se calculan mediante interpolación lineal entre g1 y g5
Cálculos
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=