En las técnicas de valoración de flujos de caja descontados (DCF), el valor de las acciones se estima en función del valor presente de alguna medida del flujo de caja. Los dividendos son la medida más limpia y directa del flujo de caja porque son claramente flujos de caja que van directamente al inversor.
Área para los usuarios de pago
Pruébalo gratis
DuPont de Nemours Inc. páginas disponibles de forma gratuita esta semana:
- Balance: activo
- Estructura del balance: activo
- Estructura del balance: pasivo y patrimonio contable
- Relación entre el valor de la empresa y la EBITDA (EV/EBITDA)
- Relación entre el valor de la empresa y la FCFF (EV/FCFF)
- Relación precio-FCFE (P/FCFE)
- Valor actual del flujo de caja libre respecto al patrimonio neto (FCFE)
- Ratio de rendimiento sobre el capital contable (ROE) desde 2005
- Relación precio/valor contable (P/BV) desde 2005
- Análisis de la deuda
Aceptamos:
Valor intrínseco de las acciones (resumen de valoración)
Año | Valor | DPSt o valor terminal (TVt) | Cálculo | Valor actual en |
---|---|---|---|---|
0 | DPS01 | |||
1 | DPS1 | = × (1 + ) | ||
2 | DPS2 | = × (1 + ) | ||
3 | DPS3 | = × (1 + ) | ||
4 | DPS4 | = × (1 + ) | ||
5 | DPS5 | = × (1 + ) | ||
5 | Valor terminal (TV5) | = × (1 + ) ÷ ( – ) | ||
Valor intrínseco de las acciones ordinarias de DuPont (por acción) | ||||
Precio actual de las acciones |
Basado en el informe: 10-K (Fecha del informe: 2019-12-31).
1 DPS0 = Suma de los dividendos por acción de DuPont acciones ordinarias del último año. Ver detalles »
¡Renuncia!
La valoración se basa en supuestos estándar. Pueden existir factores específicos relevantes para el valor de las acciones y omitidos aquí. En tal caso, el valor real de las existencias puede diferir significativamente del estimado. Si desea utilizar el valor intrínseco estimado de las acciones en el proceso de toma de decisiones de inversión, hágalo bajo su propio riesgo.
Tasa de retorno requerida (r)
Suposiciones | ||
Tasa de rendimiento del LT Treasury Composite1 | RF | |
Tasa de rendimiento esperada de la cartera de mercado2 | E(RM) | |
Riesgo sistemático de DuPont acciones ordinarias | βDD | |
Tasa de rendimiento requerida para las acciones ordinarias de DuPont3 | rDD |
1 Promedio no ponderado de los rendimientos de las ofertas de todos los bonos del Tesoro de EE. UU. con cupón fijo en circulación que no vencen ni son rescatables en menos de 10 años (proxy de tasa de rendimiento libre de riesgo).
3 rDD = RF + βDD [E(RM) – RF]
= + [ – ]
=
Tasa de crecimiento de dividendos (g)
Tasa de crecimiento de dividendos (g) implícita en el modelo PRAT
DuPont de Nemours Inc., modelo PRAT
Basado en los informes: 10-K (Fecha del informe: 2019-12-31), 10-K (Fecha del informe: 2018-12-31), 10-K (Fecha del informe: 2017-12-31), 10-K (Fecha del informe: 2016-12-31), 10-K (Fecha del informe: 2015-12-31).
2019 Cálculos
1 Tasa de retención = (Utilidad neta atribuible a DuPont – Dividendos declarados sobre acciones ordinarias – Dividendos de acciones preferentes) ÷ (Utilidad neta atribuible a DuPont – Dividendos de acciones preferentes)
= ( – – ) ÷ ( – )
=
2 Ratio de margen de beneficio = 100 × (Utilidad neta atribuible a DuPont – Dividendos de acciones preferentes) ÷ Ventas netas
= 100 × ( – ) ÷
=
3 Ratio de rotación de activos = Ventas netas ÷ Activos totales
= ÷
=
4 Ratio de apalancamiento financiero = Activos totales ÷ Capital contable total de DuPont
= ÷
=
5 g = Tasa de retención × Ratio de margen de beneficio × Ratio de rotación de activos × Ratio de apalancamiento financiero
= × × ×
=
Tasa de crecimiento de dividendos (g) implícita en el modelo de crecimiento de Gordon
g = 100 × (P0 × r – D0) ÷ (P0 + D0)
= 100 × ($ × – $) ÷ ($ + $)
=
Dónde:
P0 = Precio actual de las acciones de DuPont acciones ordinarias
D0 = Suma de los dividendos por acción de DuPont acciones ordinarias del último año
r = tasa de rendimiento requerida sobre las acciones ordinarias de DuPont
Año | Valor | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 y siguientes | g5 |
Dónde:
g1 está implícito en el modelo PRAT
g5 está implícito en el modelo de crecimiento de Gordon
g2, g3 y g4 se calculan utilizando interpolación lineal entre g1 y g5
Cálculos
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=