En las técnicas de valoración de flujos de caja descontados (DCF), el valor de las acciones se estima en función del valor presente de alguna medida del flujo de caja. El flujo de caja libre a capital (FCFE) se describe generalmente como los flujos de efectivo disponibles para el accionista después de los pagos a los tenedores de deuda y después de tener en cuenta los gastos para mantener la base de activos de la empresa.
Área para los usuarios de pago
Pruébalo gratis
Accenture PLC páginas disponibles de forma gratuita esta semana:
- Balance general: pasivo y capital contable
- Estructura de la cuenta de resultados
- Estructura del balance: activo
- Análisis de ratios de liquidez
- Análisis de segmentos reportables
- Relación precio-FCFE (P/FCFE)
- Modelo de descuento de dividendos (DDM)
- Ratio de rendimiento sobre el capital contable (ROE) desde 2005
- Análisis de ingresos
- Periodificaciones agregadas
Aceptamos:
Valor intrínseco de las acciones (resumen de valoración)
Accenture PLC, previsión de flujo de caja libre a capital (FCFE)
US$ en miles, excepto datos por acción
Año | Valor | FCFEt o valor terminal (TVt) | Cálculo | Valor actual en |
---|---|---|---|---|
01 | FCFE0 | |||
1 | FCFE1 | = × (1 + ) | ||
2 | FCFE2 | = × (1 + ) | ||
3 | FCFE3 | = × (1 + ) | ||
4 | FCFE4 | = × (1 + ) | ||
5 | FCFE5 | = × (1 + ) | ||
5 | Valor terminal (TV5) | = × (1 + ) ÷ ( – ) | ||
Valor intrínseco de Accenture acciones ordinarias | ||||
Valor intrínseco de Accenture acciones ordinarias (por acción) | ||||
Precio actual de las acciones |
Basado en el informe: 10-K (Fecha del informe: 2024-08-31).
¡Renuncia!
La valoración se basa en supuestos estándar. Pueden existir factores específicos relevantes para el valor de las acciones y omitidos aquí. En tal caso, el valor real de las existencias puede diferir significativamente del estimado. Si desea utilizar el valor intrínseco estimado de las acciones en el proceso de toma de decisiones de inversión, hágalo bajo su propio riesgo.
Tasa de retorno requerida (r)
Suposiciones | ||
Tasa de rendimiento del LT Treasury Composite1 | RF | |
Tasa de rendimiento esperada de la cartera de mercado2 | E(RM) | |
Riesgo sistemático de Accenture acciones ordinarias | βACN | |
Tasa de rendimiento requerida para las acciones ordinarias de Accenture3 | rACN |
1 Promedio no ponderado de los rendimientos de las ofertas de todos los bonos del Tesoro de EE. UU. con cupón fijo en circulación que no vencen ni son rescatables en menos de 10 años (proxy de tasa de rendimiento libre de riesgo).
3 rACN = RF + βACN [E(RM) – RF]
= + [ – ]
=
Tasa de crecimiento de FCFE (g)
Basado en los informes: 10-K (Fecha del informe: 2024-08-31), 10-K (Fecha del informe: 2023-08-31), 10-K (Fecha del informe: 2022-08-31), 10-K (Fecha del informe: 2021-08-31), 10-K (Fecha del informe: 2020-08-31), 10-K (Fecha del informe: 2019-08-31).
2024 Cálculos
1 Tasa de retención = (Utilidad neta atribuible a Accenture plc – Dividendos) ÷ Utilidad neta atribuible a Accenture plc
= ( – ) ÷
=
2 Ratio de margen de beneficio = 100 × Utilidad neta atribuible a Accenture plc ÷ Ingresos
= 100 × ÷
=
3 Ratio de rotación de activos = Ingresos ÷ Activos totales
= ÷
=
4 Ratio de apalancamiento financiero = Activos totales ÷ Capital total de los accionistas de Accenture plc
= ÷
=
5 g = Tasa de retención × Ratio de margen de beneficio × Ratio de rotación de activos × Ratio de apalancamiento financiero
= × × ×
=
Tasa de crecimiento de FCFE (g) implícita en el modelo de carga única
g = 100 × (Valor de mercado de la renta variable0 × r – FCFE0) ÷ (Valor de mercado de la renta variable0 + FCFE0)
= 100 × ( × – ) ÷ ( + )
=
Dónde:
Valor de mercado de la renta variable0 = Valor actual de mercado de Accenture acciones ordinarias (US$ en miles)
FCFE0 = el último año Accenture flujo de caja libre a capital (US$ en miles)
r = Tasa de rendimiento requerida sobre las acciones ordinarias de Accenture
Año | Valor | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 y siguientes | g5 |
Dónde:
g1 está implícito en el modelo PRAT
g5 está implícito en el modelo de una sola etapa
g2, g3 y g4 se calculan mediante interpolación lineal entre g1 y g5
Cálculos
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=